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Abstract. Ando [1] proved that for m commuting positive definite matri-
ces, the m-fold Hadamard product of their geometric mean is bounded
above by their Hadamard product. We obtain a natural extension to
the non-commutative case.

In what follows, if M is a positive definite n × n matrix and α ∈ R, then Mα will
denote its unique positive αth power. In 1979, Ando [1] developed a robust definition of
the geometric mean of two positive definite n × n matrices M1 and M2 that had been
introduced by Pusz and Woronowicz [5]:

G(M1,M2) := M
1/2
2

(
M

−1/2
2 M1M

−1/2
2

)1/2

M
1/2
2 .

The geometric mean is symmetric in M1, M2, monotone in each variable and satisfies the
arithmetic-geometric mean inequality

G(M1,M2) ≤ A(M1,M2) :=
1

2
(M1 + M2).

Given 0 < α < 1, the geometric mean is generalized to the α-mean G(α)(M1,M2) :

G(α)(M1,M2) := M
1/2
2 (M

−1/2
2 M1M

−1/2
2 )αM

1/2
2 .

The usual geometric mean is just G(1/2)(M1,M2). In stead of the arithmetic-geometric
mean inequality the Young inequality holds for α-mean:

G(α)(M1,M2) ≤ A(α)(M1,M2) := αM1 + (1− α)M2.

Ando [1] also researched the interaction of this geometric mean with the Hadamard (or
Schur) product. If M = (mij), N = (nij) are matrices of the same size, their Hadamard
product M ◦N is the matrix of entry-wise products:

M ◦N := (mijnij).

Ando [1, Theorem 13] proved that for positive definite n× n matrices M, N we have

G(M, N) ◦G(M, N) ≤ M ◦N, (A1)
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which, in the commutative case, reduces to

(MN)
1
2 ◦ (MN)

1
2 ≤ M ◦N.

Using a different method, he succeeded in generalizing his inequality to the case of several
commuting positive definite n× n matrices [1, Theorem 12]:

m∏
1

◦
(

m∏
i=1

Mi

) 1
m

≤
m∏

i=1

◦Mi. (A2)

However, at the time, the notion of geometric mean for several non-commuting matrices
was not available; therefore, inequality (A1) was not developed beyond the case of two
matrices.

In 1994, M. Sagae and K. Tanabe [6] successfully developed an approach to the ge-
ometric mean — in fact, the weighted geometric mean — of several positive definite
matrices. The main purpose of this paper is to blend the ideas of Ando and the concepts
of Sagae and Tanabe to extend inequality (A1) to the case of several positive definite n×n
matrices. As a result, we are able to provide a simpler proof of inequality (A2).

The definition Gw(M1,M2, . . . ,Mm) of the geometric mean of an m-tuple of positive
definite matrices (M1,M2, . . . ,Mm) (m > 2) was given by Sagae and Tanabe in 1994.

When m = 2, define
Gw(M1,M2) := G(w1)(M1,M2).

Suppose that the definition for the case m − 1 has been well established. Now given
an m-tuple of positive numbers (w1, w2, . . . , wm) summing to 1, define

Gw(M1,M2, . . . , Mm) := G(
∑m−1

j=1 wj) (Gw̃(M1,M2, . . . , Mm−1),Mm)

where

w̃ =

(
w1/

m−1∑
j=1

wj, w2/

m−1∑
j=1

wj, . . . , wm−1/

m−1∑
j=1

wj

)
.

In order to work effectively with the general geometric mean of Sagae and Tanabe, it
is convenient to introduce the (α1, . . . , αk)-power mean for (k + 1)-tuple positive definite
matrices. Suppose that Mi (i ≥ 1) are positive definite n× n matrices and αi (i ≥ 1) are
real scalars. Starting with the two matrix basis, we can continue recursively to define

G(α1,...,αk)(M1, . . . , Mk+1) = G(αk)(G(α1,...,αk−1)(M1, . . . ,Mk),Mk+1)

for k ≥ 2.

When αi = 1−
(

wi+1 /
i+1∑
j=1

wj

)
for i = 1, . . . , m− 1, we have

G(α1,...,αm−1)(M1, . . . , Mm) = Gw(M1, . . . ,Mm).
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This general definition of geometric mean has many good properties, but in the case
of equal weights it is not symmetric for k > 2 (see [3]). For us, it will be significant that
the weighted geometric mean satisfies an arithmetic-geometric mean inequality.

Theorem ([6], Theorem 1) Let w be an m-tuple of positive numbers (w1, w2, . . . , wm)
summing to 1 and let Mi (1 ≤ i ≤ m) be positive definite n× n matrices. Then

Gw(M1, . . . , Mk) ≤ Aw(M1, . . . ,Mk) := w1M1 + · · ·+ wkMk.

The inequality is strict unless M1 = · · · = Mk.

From inequality (A1) it is natural to conjecture that when Mi (i = 1, 2, 3) are positive
definite matrices (possibly non-commuting), the inequality

Gw(M1,M2,M3) ◦Gw(M1, M2,M3) ◦Gw(M1,M2,M3) ≤ M1 ◦M2 ◦M3

holds true. The answer is positive, and in fact the order of the matrices is unimportant.
This is to some extent surprising, since Ando’s proof of inequality (A1) depends on the
symmetry of the geometric mean of two matrices. The main result in this paper is:

Theorem 1 Let w be an m-tuple of positive numbers (w1, w2, . . . , wm) summing to 1 and
let Mi (1 ≤ i ≤ m) be positive definite n×n matrices. If (i1, i2, . . . , im), (j1, j2, . . . , jm), . . . ,
(k1, k2, . . . , km) are arbitrary m-permutations of {1, 2, . . . , m}, then

Gw(Mi1 , . . . , Mim) ◦Gw(Mj1 , . . . , Mjm) ◦ · · · ◦Gw(Mk1 , . . . , Mkm) ≤
m∏

i=1

◦Mi.

In order to obtain the proof of Theorem 1, we need to develop some properties of
tensor products of matrices. If M = (mij) is an k × l matrix and N = (nij) is an s × t
matrix, then their tensor (or Kronecker) product is the ks× lt matrix

M ⊗N :=




m11N · · · m1lN
... · · · ...

mk1N · · · mklN


 .

The tensor product of finitely many matrices can be defined by induction.

The basic properties of the tensor product can be found in [2, p. 15] and [1, p. 224].
We need two more properties that we were unable to find in the literature.

Proposition 1 (i) Let Mi (1 ≤ i ≤ k) be m×m matrices and let Ni (1 ≤ i ≤ k) be n×n
matrices. Then

k∏
i=1

(Mi ⊗Ni) =

(
k∏

i=1

Mi

)
⊗

(
k∏

i=1

Ni

)
.

(ii) Let Mi be positive definite ni×ni matrices (1 ≤ i ≤ k). Then, for any real number
α, (

k∏
i=1

⊗Mi

)α

=
k∏

i=1

⊗Mα
i .
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Proof (i) This follows easily by induction from the observation that

(A⊗B)(C ⊗D) = (AC)⊗ (BD),

which can be verified immediately from the definition of the tensor product of matrices.

(ii) Again, this follows by induction from the case of the product of two matrices.
Since M1 and M2 are positive definite, we can write (see [4, Theorem 2.5.4]) M1 = U∗

1 SU1

and M2 = U∗
2 TU2, using appropriate unitary matrices U1 and U2, and positive definite

diagonal matrices S and T. By (i),

M1 ⊗M2 = (U∗
1 ⊗ U∗

2 )(S ⊗ T )(U1 ⊗ U2) = (U1 ⊗ U2)
∗(S ⊗ T )(U1 ⊗ U2)

and, since U1 ⊗ U2 is unitary, the functional calculus (see [1, p. 212]) allows us to write

(M1 ⊗M2)
α = (U1 ⊗ U2)

∗(S ⊗ T )α(U1 ⊗ U2)

= (U∗
1 ⊗ U∗

2 )(Sα ⊗ T α)(U1 ⊗ U2) = (U∗
1 SU1)

α ⊗ (U∗
2 TU2)

α = Mα
1 ⊗Mα

2 .

In [1], Ando pointed out a fundamental commutativity relation between the geometric
mean and tensor product of two positive definite matrices, namely

G(M1 ⊗M2, N1 ⊗N2) = G(M1, N1)⊗G(M2, N2). (1)

In fact, this can readily be extended to the α-power mean. The analog of identity (1) is

G(α)(M1 ⊗M2, N1 ⊗N2) = G(α)(M1, N1)⊗G(α)(M2, N2), (2)

and this follows easily from Proposition 1.
A multi-stage induction argument leads to a simple, but powerful extension of identity

(2):

Proposition 2 Let Mij (1 ≤ i ≤ m, 1 ≤ j ≤ k) be positive definite n× n matrices, and
let w be an m-tuple of positive numbers (w1, w2, . . . , wm) summing to 1 . Then

Gw

(
k∏

j=1

⊗M1j, . . . ,

k∏
j=1

⊗Mmj

)
=

k∏
j=1

⊗ Gw(M1j, . . . ,Mmj).

Proof With the help of Proposition 1, a preliminary induction shows that

G(α1,...,αm−1)(M1⊗N1, . . . , Mm⊗Nm) = G(α1,...,αm−1)(M1, . . . , Mm)⊗G(α1,...,αm−1)(N1, . . . , Nm),

and then a second induction gives

G(α1,...,αm−1)

(
k∏

j=1

⊗M1j, . . . ,

k∏
j=1

⊗Mmj

)
=

k∏
j=1

⊗G(α1,...,αm−1)(M1j, . . . ,Mmj).
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Setting αi = 1−
(

wi+1 /
i+1∑
j=1

wj

)
for i = 1, . . . , m−1 yields the statement of Proposition

2. We omit the simple details.

In many situations, properties of tensor products transfer to Hadamard products. This
is thanks to an important connection between the two products (e.g. see [1, Lemma 4]):
there is a positive linear map Φk from nk-dimensional space to n-dimensional space of
matrices such that, for all n× n matrices Mi (1 ≤ i ≤ k),

Φk

(
k∏

i=1

⊗Mi

)
=

k∏
i=1

◦Mi. (3)

With this, we can quickly identify the key to our proof of Theorem 1:

Proposition 3 Let Mij (1 ≤ i ≤ m, 1 ≤ j ≤ k) be positive definite n× n matrices, and
let w be an m-tuple of positive numbers (w1, w2, . . . , wm) summing to 1 . Then

k∏
j=1

⊗ Gw(M1j, . . . , Mmj) ≤
m∑

i=1

wi

k∏
j=1

⊗Mij

and
k∏

j=1

◦ Gw(M1j, . . . , Mmj) ≤
m∑

i=1

wi

k∏
j=1

◦Mij.

Proof By Sagae and Tanabe’s arithmetic-geometric mean inequality and Proposition
2,

k∏
j=1

⊗ Gw(M1j, . . . , Mmj) = Gw

(
k∏

j=1

⊗ M1j, . . . ,

k∏
j=1

⊗ Mmj

)
≤

m∑
i=1

wi

k∏
j=1

⊗ Mij.

The Hadamard product inequality follows by (3) from the tensor product inequality.

Proof of Theorem 1 In Proposition 3, let

(M11, . . . ,Mm1) = (Mi1 , . . . , Mim),

(M12, . . . ,Mm2) = (Mj1 , . . . , Mjm),
...

(M1m,M2m, . . . , Mmm) = (Mk1 , . . . , Mkm).

Then, since the Hadamard product is commutative,

Gw(Mi1 , . . . , Mim) ◦ · · · ◦Gw(Mk1 , . . . ,Mkm)

=
m∏

j=1

◦ Gw(M1j, . . . , Mmj) ≤
m∑

i=1

wi

m∏
j=1

◦Mij =
m∑

i=1

wi

m∏
j=1

◦Mj =
m∏

i=1

◦Mi.
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It is clear that inequality (A2) is an immediate corollary of Theorem 1. Let (i1, i2, . . . ,
im), (j1, j2, . . . , jm), . . . , (k1, k2, . . . , km) be arbitrary m-permutations of {1, 2, . . . ,m}. If
Mi (1 ≤ i ≤ m) commute and w1 = w2 = · · · = wm = 1/m, then

Gw(Mi1 , . . . , Mim) = Gw(Mj1 , . . . , Mjm)

= · · ·

= Gw(Mk1 , . . . , Mkm) =

(
m∏

i=1

Mi

) 1
m

.
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